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ABSTRACT

We propose a novel blind source separation algorithm called
Block AutoRegressive Blind Identi cation (BARBI). The al-
gorithm is asymptotically ef cient in separation of instanta-
neous linear mixtures of blockwise stationary Gaussian au-
toregressive processes. A novel closed-form formula is de-
rived for a Cramér Rao lower bound on elements of the cor-
responding Interference-to-Signal Ratio (ISR) matrix. This
theoretical ISR matrix can serve as an estimate of the sepa-
ration performance on the particular data. In simulations, the
algorithm is shown to be applicable in blind separation of a
linear mixture of speech signals.

Index Terms— Approximate joint diagonalization, blind
source separation, autoregressive processes, second-order statis-
tics

1. INTRODUCTION

Blind source separation aims to separate independent original
signals from their instantaneous linear mixture, symbolically
� � ��, where� is a matrix that contains, as rows, the origi-
nal signals,� is an unknown mixing matrix and� represents
the available data. Throughout this paper we assume that the
mixing matrix has square form, say the dimension � � �. In
simulations, we also consider the overdetermined case, when
the number of sources is smaller that the number of received
signals.

Three possible routes to solution of the blind source sep-
aration can be nd in the literature: non-Gaussianity, non-
stationarity, and spectral diversity [3]. Many real-world sig-
nals exhibit all three of these features. This paper aims to
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utilize jointly non-stationarity and spectral diversity like the
papers [2, 4, 6, 7].

Unlike the previous algorithms, the proposed algorithm
is asymptotically ef cient, when the data obey the assumed
piecewise stationary AR model, i.e. the resultant ISR matrix
of the algorithm approaches the corresponding Cramer-Rao-
induced lower bound, if the length of the blocks, where the
sources are stationary, goes to in nity. In general, the algo-
rithm is very fast compared to its competitors and allows to
process data with high dimensions (100+). A novel expres-
sion for the CRB-induced bound is derived in Section 3. This
expression allows to predict the accuracy of the blind sepa-
ration for given set of the data. Moreover, the estimated ISR
matrix allows to select the most “interesting” components to
become the source estimates in the overdetermined case. In
simulations in Section 4, the algorithm is tested on blind sep-
aration of instantaneous mixtures of arti cial (model obey-
ing) signals and natural speech signals, and its performance is
compared to that of the algorithm by Pham [7].

2. THE PROPOSED ALGORITHM

Assume that the received signals can be divided into� blocks
of the equal length (the extension of the method to blocks of
unequal length is straightforward). In addition, assume that
the blocks of the source signals can be modeled as Gaussian
autoregressive random processes of the order that is smaller
or equal to some maximum order ����. The blind source
separator proposed in the paper will be obtained by a suitable
approximate joint diagonalization (AJD) of the� ��matrices
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� � �� � � � �� � 	 � �� �� � � � � ����, where � � ���� � �,
�� � �
� is the length of each block,� is the total length
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of the data, and

������ � ���������������� � � � ����������

is the ��th signal block of the data shifted to the right by �
samples. (For simplicity, we assume here that the data ���
� � � ��� � � �, ���� � � ����� were available.) The approx-
imate joint diagonalization (AJD) means nding a demixing
matrix �� such that the matrices �� ����

��� are all roughly
diagonal. Most of existing algorithms are gradient-based and
exhibit relatively slow convergence. Comparison of perfor-
mance of these algorithms is even more complicated, because
not all of them attempt to optimize the same criterion of the
approximate diagonality.

The algorithm that is proposed in this paper is kind of ap-
proximate Newton algorithm, and therefore it exhibits nearly
quadratic (very fast) convergence even in high dimensions.
Moreover, each iteration is computationally cheap, having its
complexity dominated by complexity of the transform ���� �
� �����

� for all � and �.
The algorithm is similar to the WASOBI algorithm (Weight-

Adjusted SOBI) of [9, 11, 13] generalized to an arbitrary num-
ber of blocks, but is computationally simpler than the natural
extension of WASOBI, called Block WASOBI [13], because
it does not require computation of weight matrices used in
WASOBI. Instead, it utilizes the Pham’s-Garat’s condition for
optimum estimate[8], as it will be explained later.

Let�������� denote the��� vector composed of ��� ���th
elements of the matrices� �����

� , 	 � 	� � � � � ����, � �
�� � � � �
 , and �� � � �� � � � � �. Let ������ is a set of suit-
able positive de nite weight matrices of the size ���. Note
that the optimum weight matrices ���� for the WASOBI-
like algorithm would be given as the inverse of cov[��������].
In [11] these optimum weight matrices were de ned in terms
of the power spectra of the ��th and the ��th source in the
��th interval. To be more speci c, the paper [11] has dealt
with separation of stationary signals as if 
 � �, and the in-
dex � was omitted. It was shown in [13] that for all �� � �
�� � � � � � and for the optimum weight matrices ��� it holds
that ��������� � �� where �� only depends on the spec-
trum (AR coef cients) of the ��th source, and is independent
of the spectrum of the ��th source. In particular,

�� �

�
�



���	�� ������ � � � � ��������

��
where ��� � is an inverse of the Fourier transform of the in-
verse of the Fourier transform of the covariance function of
the ��th source in the ��th interval, �� � � � ��� . In other
words, it holds that the convolution of ��� � and ��� � is the
Kronecker’s delta. Here, however, one cannot restrict  to the
interval �	� ����� but has to consider covariance extension of
the AR process for �� �  � �. Therefore the proper
computation of �		
� involves estimation of autoregressive co-
ef cients of the ��th source given the available covariances
of the process.

The main iteration of WASOBI (where 
 � �, index �
is missing) is

�		��
 � ��		
����		


where � is the iteration index, the off-diagonal elements of
�		
 obey the 
� 
 linear systems� ��		
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�
�
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�
�

(1)
and the diagonal elements of �		
 are set to one. Note that
the stationary point of the algorithm where the convergence
is stopped, obeys relations ������������ � ������������ � 	
for all �� �, � �� �. These conditions are in accord with the
condition ��� ���� � ��� ���� � 	, derived by Pham and Garat
[8] for optimal separation of sources with known spectra, see
[13].

In our algorithm, we replace the products������� by ��
and consider a general number
 of intervals together to de-
termine �		
 (because the mixing matrix is assumed to be
common to all intervals). The result is� ��		
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[�		
��]������
�
� (2)

In (2), ����� is a short-hand notation for �������		
� and �		
��
is derived out of �������		
�. The algorithm remains asymp-
totically ef cient for the same reason as WASOBI and Block
WASOBI; it is only faster.

Computer simulations show that the proposed iterations in
(2) has the same, nearly quadratic convergence that is inherent
to the Gauss iteration in [13], see the simulation section. We
found useful to initialize the algorithm by the outcome of the
unweighted AJD algorithm named UWEDGE[13].

3. THE CRB EXPRESSION

A common measure for the performance of BSS algorithms
based on an estimate �� of the unmixing matrix is the ISR
matrix, whose elements are de ned as

����
�
� �

�
	� ������	

�

	� ������ 	�

�
����	�
����	�

�� � � �� � � � �� � � �� ��

(3)
where ���� � denotes the �-th source’s average correlation
function (average over all frames of stationarity). ���� is
essentially the relative mean square residual presence of the
�-th source in the estimated �-th source.

The CRB expression for the ISR matrix elements to be
derived in this section is an extension of the CRB derived in
[5] for one block. It was shown in [5, 12] that the Fisher
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information matrix (FIM) for estimating � for given mixing
matrix� is

����� � ��� ���������
� � ��� (4)

where ����� denotes the FIM when the mixing matrix is
� � � (with the same AR parameters). The matrix �����
has elements

��

�
�������
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(5)
where ����� is the log-likelihood function for the problem
and

��� �
�

���

���
	
���

��
	��
�	��
� ��� (6)

In the block-stationary model, each ��� will have still another
index  which speci es the signal interval. The nal Fisher
information matrix for estimating� will be given as a sum of
the information matrices corresponding to individual frames.
Like in [5], the resulting FIM is a diagonal matrix except for
the cross terms on the ���������� related entries,

���

�
	��� �
� 	���

�

where

	��� �
�

�

��
��

���
���

���

and ��� is the variance of the innovation sequence of the
��th source in the �th interval. The CRB-induced bound
on the ISR in (3) is then given as


���� �
�

���
�

	���
	��� 	��� � �

�
		����
		����

� (7)

Since the algorithm is asymptotically ef cient, an approxi-
mate equality holds in (7). The above expression can be used
as an estimate of the separation performance, provided that
the theoretical quantities 	��� and 		���� are replaced by their
empirical counterparts.

4. SIMULATIONS

First we have tested the algorithm on data that exactly obey
the assumed model. We considered three signals, each com-
posed of two stationary blocks. The signal in each block was
a rst order Gaussian AR process of the length �� � ����
samples. The rst signal had the same spectral shape in each
block, having AR coef cients ��������, where � was a free
parameter, but the data in the former block had 4 times larger

variance than data in the latter block. The second signal had
the same AR coef cients and was stationary. Therefore, these
two signals would not be separable by methods that rely on
the spectral diversity only. The separation is possible only
thanks to unequal variance in the two blocks. The third signal
had the same AR coef cients in its former block, but differ-
ent in the latter block, namely ��� ����. The variance in both
blocks of the third signal was the same. The same pro le of
the variance of the second and the third signals makes them
non-separable by methods that rely on power-nonstationarity
alone. For � � �, the second and the third signals become
non-separable, only the rst signal can be separated from the
mixture thanks to its non-stationarity.

The data were generated independently in 500 trials, mixed
by a random square matrix with independent� ��� ��-distributed
elements and demixed again. The resultant total (row) ISR for
separation of each of the three signals is shown in Figure 1 as
a function of the parameter �. We can see that the proposed
algorithm, BARBI, allows separation of all three signals with
ISR�-20 dB, if � � ��� . The gures also show performance
of the algorithm by Pham [7] with two blocks and four fre-
quencies. We note that the estimate of the rst signal is not as
good as that of BARBI. It also can be seen that BARBI attains
the corresponding CRB, except for cases with small �.
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Fig. 1. Average ISR in dB obtained in separation of three arti cial
blockwise AR(1) signals versus parameter �.

The second example consists in separation of a linear in-
stantaneous mixture of natural speech data. We used speech
utterances of � � �� different speakers (male and female),
sampled at 8000Hz. In each trial, each source was taken as
� � ���� samples of speech by the respective speakers,
starting at random times. The sources were mixed using a
random matrix and blindly separated by the proposed algo-
rithm with different parameters. The result for Pham’s algo-
rithm are shown for the same number of blocks and for four
frequencies. We can see that the best separation is obtained
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Fig. 2. Average ISR obtained in 100 independent trial in separation
of 15 natural speech signals.
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Fig. 3. Learning curve of the UWEDGE/BARBI algorithm.

for the rst-order AR model, the method is not very sensi-
tive to the number of blocks. Optimum number of blocks lies
somewhere between 18 and 30. Figure 3 shows the typical
learning curve of the algorithm for the second example, 25
blocks (frames) and the rst AR order. The rst 15 iterations
are in the initial separation procedure, UWEDGE, the addi-
tional iterations are that of BARBI. It reveals fast convergence
of both algorithms.

In the last example we separated an overdetermined noisy
mixture of speech signals. We used the same set of speech
signals, but the mixing matrix was of the size ���� ��, again
with � ��� ��-distributed elements. A white Gaussian noise
of the variance ��������� was added to the mixture for vary-
ing SNR. Figure 4 shows the average empirical ISR of the
estimated speech signals versus the SNR, computed for our
BARBI with the rst-order AR model and 25 blocks, and
of the algorithm SOBI-RO [1] that estimates only interesting
sources. It is shown that BARBI outperforms the latter algo-
rithm even at low SNR. One run of BARBI takes about 17 s
on an ordinary PC with a 3 GHz processor, while SOBI-RO
takes about 2 s.

5. CONCLUSIONS

The proposed algorithm, BARBI, appears to be fast and ro-
bust, and if the data obey the assumed block-AR model, also
asymptotically ef cient. For separation of speech signals, the
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Fig. 4. Average ISR in separating overdetermined noisy mixture of
the speech data versus the SNR.

rst-order model usually gives the best separation results.
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